Jacobi–bernstein Basis Transformation

نویسنده

  • ABEDALLAH RABABAH
چکیده

Abstract — In this paper we derive the matrix of transformation of the Jacobi polynomial basis form into the Bernstein polynomial basis of the same degree n and vice versa. This enables us to combine the superior least-squares performance of the Jacobi polynomials with the geometrical insight of the Bernstein form. Application to the inversion of the Bézier curves is given. 2000 Mathematics Subject Classification: 41A10; 33C45; 65D17.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weighted dual functions for Bernstein basis satisfying boundary constraints

In this paper, we consider the issue of dual functions for the Bernstein basis which satisfy boundary conditions. The Jacobi weight function with the usual inner product in the Hilbert space are used. Some examples of the transformation matrices are given. Some figures for the weighted dual functions of the Bernstein basis with respect to the Jacobi weight function satisfying boundary condition...

متن کامل

Modified Bernstein Polynomials and Jacobi Polynomials in q-Calculus

We introduce here a generalization of the modified Bernstein polynomials for Jacobi weights using the q-Bernstein basis proposed by G.M. Phillips to generalize classical Bernstein Polynomials. The function is evaluated at points which are in geometric progression in ]0, 1[. Numerous properties of the modified Bernstein Polynomials are extended to their q-analogues: simultaneous approximation, p...

متن کامل

Modified Berstein Polynomials and Jacobi Polynomials in q-Calculus

We introduce here a generalization of the modified Bernstein polynomials for Jacobi weights using the q-Bernstein basis proposed by G.M. Phillips to generalize classical Bernstein Polynomials. The function is evaluated at points which are in geometric progression in ]0, 1[. Numerous properties of the modified Bernstein Polynomials are extended to their q-analogues: simultaneous approximation, p...

متن کامل

Jacobi-weighted Orthogonal Polynomials on Triangular Domains

We construct Jacobi-weighted orthogonal polynomials (α,β,γ) n,r (u,v,w), α,β,γ > −1, α+ β + γ = 0, on the triangular domain T . We show that these polynomials (α,β,γ) n,r (u, v,w) over the triangular domain T satisfy the following properties: (α,β,γ) n,r (u,v,w) ∈ n, n≥ 1, r = 0,1, . . . ,n, and (α,β,γ) n,r (u,v,w) ⊥ (α,β,γ) n,s (u,v,w) for r =s. Hence, (α,β,γ) n,r (u,v,w), n= 0,1,2, . . ., r =...

متن کامل

Jacobi polynomials in Bernstein form

The paper describes a method to compute a basis of mutually orthogonal polynomials with respect to an arbitrary Jacobi weight on the simplex. This construction takes place entirely in terms of the coefficients with respect to the so–called Bernstein–Bézier form of a polynomial.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004